
© 2017 PROVENIR ALL RIGHTS RESERVED

DIVIDE AND CONQUER:
An Overview of Microservices in
Financial Technology

© 2017 PROVENIR ALL RIGHTS RESERVED

An Overview of Microservices in Financial Technology
DIVIDE AND CONQUER:

The intention:
software systems
become more easily
evolvable, scalable,
and maintainable.

The Microservices concept is becoming an increasingly popular
architectural pattern in modern systems. A cult-classic on the back of
Netflix’s widely-promoted work within the concept, it has become the
new-tech poster child for organizations – from growth-stage startups
to the enterprise – who are seeking more agility, scalability, and
independence.

The notion, closely related in concept to Service Oriented Architecture
(SOA) that was made popular by a Wells Fargo case study in the 1990’s,
is often presented in contrast to a monolithic architecture. That is to
say, Microservices takes what could have traditionally been a single
monolithic application and decomposes that application into multiple,
loosely coupled, and autonomous services. The intention: software
systems become more easily evolvable, scalable, and maintainable.

While microservices are infiltrating organizations of all kinds, this paper
will focus on microservices within the financial services industry. We
discuss the strategic challenges facing the sector and consider how an
architectural shift to microservices could play into its evolution. We will
also evaluate the challenges involved in architecture transformation,
specifically from Microservices point of view. Are they the easy win
they are said to be or do they require more substantial operational and
organizational changes along the way?

https://martinfowler.com/articles/microservices.html
http://www.eriktownsend.com/look/doc_download/12-1-the-25-year-history-of-service-oriented-architecture

© 2017 PROVENIR ALL RIGHTS RESERVED

THE FINANCIAL SERVICES OUTLOOK
External Challenges
Financial services is a highly competitive industry that is riddled with
high barriers to entry. Challengers historically found it difficult to break
through drastically low margins and tightening regulations. However,
large enterprises that once dominated the market are now facing
disruption from smaller, leaner fintech companies that are eating
away at the value chain one discrete bite at a time. Typically marked
by technological agility, specialization, and customer-centric UX, new
challengers in financial services present a serious outside threat to
established players. In fact, PWC Global has estimated that 28% of all
incumbent Banking and Payments business is at risk in the wake of the
FinTech movement.

Internal Challenges
This shift leads us to the realization that legacy presents an increasing
risk to these large organizations. Comparably ancient technologies
and rigid software architectures can make maintenance and change
over time costly and extremely challenging. Management of these
architectures is further complicated by high acquisition activity in the
industry (the silver lining of that FinTech movement we mentioned),
thereby introducing incompatible systems. And then, there’s the
rise of multi-channel financial services that presents a whole slew of
additional integration trials.

To remain competitive, financial services firms are reconsidering
cumbersome architectures and transforming them into something
more adaptable. In fact, a recent survey of financial institutions found
that ~85% of decision makers consider their core technology to be
too rigid and slow. Consequently, ~80% are expected to replace
their core banking systems within the next five years. Could this be
where microservices plays the Deux es machina of the banking saga,
swooping in to save the day?

https://www.forbes.com/sites/ciocentral/2017/02/24/is-the-financial-services-industry-ripe-for-disruption/
https://www.pwc.com/gx/en/industries/financial-services/publications/financial-services-technology-2020-and-beyond-embracing-disruption.html
https://www.mulesoft.com/resources/esb/financial-services-legacy-systems-modernization
https://blogs.sap.com/2017/03/15/customer-engagement-microservices-key-to-surviving-digital-disruption/

© 2017 PROVENIR ALL RIGHTS RESERVED

WHAT ARE MICROSERVICES?
For those of you who are just catching up, let’s take a step back for a second and set the stage.
Microservices are an architectural pattern in which a software system is split up into distributed services.
These services tend to be autonomous, loosely coupled, and independently deployable, each running
a unique process to serve a business outcome. Whereas a monolithic architecture crams an entire
application into one codebase, a microservice architecture tends to distribute by business functionality.
For example, functionalities like credit checks or funding could live in different microservices, each
developed and managed by a different team.

Source: J.D. Power SurveyIllustrations sourced from Freepik

Think of it this way:
If a monolithic system
is akin to kids riding a
school bus, microservices
are super-children riding
unicorns.

THE ADVANTAGES OF MICROSERVICES
A Microservices approach comes with many benefits over the
monolith. And, while microservices are far from a silver bullet (we will
touch on the challenges in the next section), the architectural style
can promote agility and speed to market for those who do make the
transition responsibly.

Let’s take a look at some key advantages of microservices:

•	 Independently Deployable
•	 Resilient
•	 Scalable
•	 DevOps Oriented
•	 Polyglot

© 2017 PROVENIR ALL RIGHTS RESERVED

Independently Deployable
By breaking an application up into microservices, your teams can
develop and release each service independent of another. This is a
big deal when it comes to product or feature roll-outs. Teams no longer
have to treat the software system as an unwieldy whole whenever they
want to roll out a new feature.

In the risk field, this notion behaves the same way. A data scientist
interacts with a risk model in the same way a developer might change
a login service. The data scientist can make changes to models or
business logic, and those changes are validated, tested, and pushed
back into the application.

If you’re starting to get the idea that microservices also means
organizational change that more closely aligns your development
teams with your operational teams, you’re right. We will touch on that in
the aptly named ‘DevOps’ section.

Resilient
Because a microservice is autonomous and loosely coupled, the failure
of one service tends to happen in isolation of the rest of the system.
The logic goes something like this: In a monolith, everything exists on
one “circuit” (think of it as a string of those old fairy lights). If something
fails, the entire system goes down. However, microservices exist like
independent, battery-operated light bulbs. If one goes out, it has no
impact on the remaining lights. This concept of fault tolerance is a huge
driver in financial services, where downtime can have detrimental
reputational and regulatory consequences.

Consider this in a banking application, where a mission critical piece of
functionality like payment processing would continue to function, even
if something unrelated like a credit check microservice failed. Traffic
can then be routed to a new instance because microservices tend to
be stateless by design.

By breaking an
application up into
microservices, your
teams can develop
and release each
service independent
of another.

http://samnewman.io/talks/principles-of-microservices/
https://blog.openshift.com/microservices-how-to-explain-them-to-your-ceo/?intcmp=7016000000127cYAAQ
 http://samnewman.io/talks/principles-of-microservices/
https://www.capgemini.com/resource-file-access/resource/pdf/simplifying_the_banking_architecture_2015.pdf

© 2017 PROVENIR ALL RIGHTS RESERVED

A microservice
based system offers
unique scalability
because parts of an
application scale
independently.

Scalable
If microservices receive praise for nothing else, they have undoubtedly
been hailed as the liberator of scalability. A microservice based
system offers unique scalability because parts of an application scale
independently. If there is a heavy load on a payment system, for
example, it can be scaled on its own leaving the rest of the system
untouched.

By contrast, the monoliths of old tend to be stateful. Thus, scalability
issues are solved:

1. �Vertically, by throwing more compute resources at them, which ends
up becoming expensive and limited in success.

2. �Horizontally, by making use of sticky sessions, something else which
can be quite brittle in the event of failure.

Stateless microservices don’t encounter either of these challenges. In
fact, it becomes very trivial to scale as needed horizontally.

DevOps Oriented
Conway’s Law promotes the idea that a team will produce a design
reflective of its communication structure. Depending on your present
organizational structure, this could be a lesson or a warning. That is
to say, if your developers don’t mingle with operations outside of the
annual company party, you’re in for some challenges.

The microservices-related advantage here lies in the organization of
teams around business functionality rather than technical concerns,
leading to more efficient application design. Remember when we
talked about the Data Scientist who pushes R models like a developer
pushes Java? In a DevOps or BizDevOps model, that Data Scientist
could sit, stand, or walk on a treadmill desk next to your QA engineer.
This cross-functional team structure is breaking down the silos that are
all too familiar with financial services, and are widely known to cause
inefficiencies and lackluster customer experience.

https://techbeacon.com/challenges-scaling-microservices

http://www.melconway.com/Home/Conways_Law.html

© 2017 PROVENIR ALL RIGHTS RESERVED

Polyglot
Because a monolith has a single codebase, it also has one language.
Introducing a new language, a challenge that many an acquisition
onboarding process has encountered, would be a daunting task that
could result in significant migration work. However, with the microservices

approach, services can be authored in various languages. For example, you might write domain centric
services in a language like Java, and network or system services in a language like Go. If they need to
communicate with one another, they do so via language-agnostic means such as HTTP.

The same principle also applies to persistence models. While a monolith is backed by a single database,
typically relational, microservices often leverage a single database for each service. This opens up
exciting possibilities for NoSQL in a climate where financial institutions frequently make use of unstructured
data for risk-related decisioning, or where storing credit bureau data in a data lake could introduce
tremendous cost savings.

Although vastly beneficial in the right environment,
microservices are not a silver bullet. In fact, they
add a lot of additional complexity over the
monolith. Let’s look at some of the key challenges
to consider and highlight some best practices to
work around said problems:

•	 The Distributed Monolith
•	 Cultural Resistance
•	 Regulations
•	 Monitoring
•	 Deployment
•	 Distributed Tracing

The Distributed Monolith
The distributed monolith, while a problem of
execution rather than concept, is often seen
anti-pattern in microservice. This occurs when
microservices are so tightly coupled that they
must always be deployed and tested together
as a whole. For example, if you have to run a
slow and time-consuming set of end-to-end tests
to validate a change to a single service, then a
lot of the benefits of microservices are negated.

Compound this problem if that single change
causes a ripple effect, requiring subsequent
changes to multiple downstream services. The
two most important strategies to avoid this are:

1. Clearly Defined Service Boundaries
By encapsulating a business functionality within
a single service, you can define a boundary
that reduces network hops and dependencies
on other services. Reducing dependencies, thus
reducing network hops, makes it easier to reason
about and test a change before releasing it.

2. Consumer-driven Contract Testing
When dependency between services is critical,
consumer driven contract (CDC) testing reduces
reliance on end-to-end tests, leaving them as
basic user journeys. CDC works a lot like test driven
development (TDD) but at the architectural level,
allowing you to validate functional collaboration
between services through their independent
component tests. And Voilà! You have shaken that
dependence on the end-to-end testing tier.

OVERCOMING THE CHALLENGES OF MICROSERVICES

http://www.openpersuasion.org/why-polyglot-microservices/
https://speakerdeck.com/tareqabedrabbo/the-7-deadly-sins-of-microservices-1
https://martinfowler.com/articles/microservice-testing/

© 2017 PROVENIR ALL RIGHTS RESERVED

Cultural Resistance
In his smart 7 Deadly Sins of Microservices, Daniel Bryant says “It’s
about the people as much as it’s about the tech.” As such, one
often overlooked consideration when adopting microservices lies
within the organizational culture. Culture clashes are nothing new in
technological change, and many an article stands on the soapbox
of change management in software and system implementation.
Since change management is a white paper in itself, suffice it to say
that heightened tension exists in firms where the status quo equals an
organization’s identity.

Before moving to microservices, plan and conduct a formal change
management process to avoid any unnecessary cultural obstacles.
Start by asking yourself: Is there any skepticism or resistance to
microservices? Do the architects believe it makes sense, and do the
business “get” the advantages to the extent that they’re actively
supporting the shift? Will the organization buy-in to the structural
changes that happen in support of a microservices architecture?

Regulations
Because microservices tend to be elastic and ephemeral, they
are naturally suited for cloud computing where resources are
programmatically provisioned on demand. However, certain financial
data tends to be strictly regulated, making public cloud storage tricky.
Whether by external or internal regulation of financial institutions, this
produces a regulatory blocker that prevents a software system from
following a cloud-based microservice architecture.

Need an approach to get around this? Simple; do not store the data.
For example, if you are developing a cloud based microservice system
that integrates with a core banking system, then data ownership can
lie with that core banking system. This data-as-a-service approach
means that, as long as the data is never copied, then the microservice
based system will also be compliant.

“It’s about the people
as much as it’s about
the tech.”

– DANIEL BRYANT
7 DEADLY SINS OF
MICROSERVICES

© 2017 PROVENIR ALL RIGHTS RESERVED

Monitoring
If you have ever seen a shell game play out in a heist movie, you can
relate to the monitoring challenges that microservices can present.
When dealing with monolithic applications, you typically interact with
one deployment and one database. In the movie, this is the jewel thief
in the red jacket fleeing the museum; he’s easily identifiable. In the
same way, monitoring the monolith is simple, with only a few hosts and
log files to analyze.

With the microservices architecture, there tends to be many services
and databases that are elastic, scaling and disappearing as required.
This is where hundreds of jewel thief decoys in red hoodies flood
the streets, presenting more red jackets to complicate the scene. In
microservices, it becomes harder to keep tabs on everything that
is happening within the system and to pinpoint where something is
breaking.

Monitoring is where leveraging the proper tools becomes necessary. If
you can automate monitoring, logging and the aggregation you can
significantly simplify the process. Even better, you can take advantage
of a user interface (UI) that visualizes your microservice application to
watch that automated masterpiece do its thing.

Deployment
The microservices approach presents many different types of services,
often written in different languages and with different dependencies.
Various services may require different versions of Python, some might
be in Java and be dependant on the JVM, and some might be a
simple Go binary.

Though we’ve all met a birthday party magician who could prove
otherwise, every coin has two sides. This is microservices’ double-sided
coin in that the best-suited technology for a service can be used
(advantage), but that each of these must be installable and runnable
in an environment (challenge).

This is why container based technologies such as Docker have become
so popular. They act as a wrapper around an application, containing
libraries and runtime settings as if a dedicated host. Now, developers
can ship a fully executable container, simplifying deployment to a
single operational concern.

You can take
advantage of a
user interface
(UI) that visualizes
your microservice
application to watch
that automated
masterpiece do its
thing.

https://www.programmableweb.com/news/tools-to-monitor-and-visualize-microservices-architecture/analysis/2016/12/14
http://microservices.io/patterns/deployment/service-per-container.html

© 2017 PROVENIR ALL RIGHTS RESERVED

Distributed Tracing
Tracing a user’s network traffic through a monolith is relatively
straightforward because a request only has one or two network hops.
So, if something fails, then it’s easy to find a stack trace for that user.
With a microservice based architecture, however, a single request
from a user can spawn many network hops around internal services.
Therefore, tracing a user through the system requires navigating loads
of different log files and piecing them together.

To avoid this headache-inducing exercise, dig into the use of
correlation IDs for user requests. Correlation IDs identify a cohesive
journey across all internal services and allow distributed tracing tools to
monitor these journeys visually.

CONCLUSION
The microservices concept continues to gain popularity, showing itself as a clear means to accelerate
software evolution. In financial services, the agility itself answers many of the industry’s questions around
digital transformation and scalability in the face of constantly changing customer, business, and
regulatory requirements. Though firms are likely to experience increased operational overhead during
the shift to microservices – particularly in areas such as building, deployment, and monitoring – these
challenges can be mitigated over time with the right planning, tools, and patterns.

Any architectural change is subject to the needs of a particular organization, but microservices are
a sensible choice for financial services firms who are seeking structural reform to solve real business
problems. Responsible adoption could mean distinct flexibility for the long-haul.

http://microservices.io/patterns/observability/distributed-tracing.html

© 2017 PROVENIR ALL RIGHTS RESERVED

MODERNIZE YOUR RISK
SOFTWARE WITH PROVENIR
FOR MICROSERVICES

CONTACT US TO LEARN MORE

For organisations that have adopted a Microservices style of architecture, or are looking to do so, Provenir
supports the decomposition of business processes providing the capability to develop and expose business
functions as discrete services.

WWW.PROVENIR .COM

https://www.provenir.com/contact/
https://www.provenir.com/2017/06/microservices-for-loan-origination/

